Soft error estimation and mitigation of digital circuits by characterizing input patterns of logic gates

نویسندگان

  • Siavash Rezaei
  • Seyed Ghassem Miremadi
  • Hossein Asadi
  • Mahdi Fazeli
چکیده

Soft errors caused by particles strike in combinational parts of digital circuits are a major concern in the design of reliable circuits. Several techniques have been presented to protect combinational logic and reduce the overall circuit Soft Error Rate (SER). Such techniques, however, typically come at the cost of significant area and performance overheads. This paper presents a low area and zero-delay overhead method to protect digital circuits’ combinational parts against particles strike. This method is made up of a combination of two sub-methods: (1) a SER estimation method based on signal probability, called Estimation by Characterizing Input Patterns (ECIP) and (2) a protection method based on gate sizing, called Weighted and Timing Aware Gate Sizing (WTAGS). Unlike the previous techniques that either overlook internal nodes signal probability or exploit fault injection, ECIP computes the sensitivity of each gate by analytical calculations of both the probability of transient pulse generation and the probability of transient pulse propagation; these calculations are based on signal probability of the whole circuit nodes which make ECIP much more accurate as well as practical for large circuits. Using the results of ECIP, WTAGS characterizes the most sensitive gates to efficiently allocate the redundancy budget. The simulation results show the SER reduction of about 40% by applying the proposed method to ISCAS’89 benchmark circuits while imposing no delay overhead and 5% area overhead. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Delay Characterization Method to Obtain the Output Waveform of Logic Gates Considering Glitches

Accurate delay calculation of circuit gates is very important in timing analysis of digital circuits. Waveform shapes on the input ports of logic gates should be considered, in the characterization phase of delay calculation, to obtain accurate gate delay values. Glitches and their temporal effect on circuit gate delays should be taken into account for this purpose. However, the explosive numbe...

متن کامل

A Design Methodology for Reliable MRF-Based Logic Gates

Probabilistic-based methods have been used for designing noise tolerant circuits recently. In these methods, however, there is not any reliability mechanism that is essential for nanometer digital VLSI circuits. In this paper, we propose a novel method for designing reliable probabilistic-based logic gates. The advantage of the proposed method in comparison with previous probabilistic-based met...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

A Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates

The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...

متن کامل

Evolutionary QCA Fault-Tolerant Reversible Full Adder

Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2014